On optimal linear codes of dimension 4
نویسندگان
چکیده
In coding theory, the problem of finding shortest linear codes for a fixed set parameters is central. Given dimension $k$, minimum weight $d$, and order $q$ finite field $\bF_q$ over which code defined, function $n_q(k, d)$ specifies smallest length $n$ an $[n, k, d]_q$ exists. The determining values this known as optimal codes. Using geometric methods through projective geometry, we determine $n_q(4,d)$ some $d$ by constructing new proving nonexistence with certain parameters.
منابع مشابه
Optimal Linear Codes of Dimension 4 over GF(5)
[48] __, " On complexity of trellis structure of linear block codes, " IEEE [49] T. Klgve, " Upperbounds on codes correcting asymmebic errors, " IEEE [SO] __, " Minimum support weights of binary codes, " IEEE Trans. Inform. [53] A. Lafourcade and A. Vardy, " Asymptotically good codes have infinite trellis comwlexitv. " IEEE Duns. issue on " Codes and Finite Geometries "). [59] __, " The shift b...
متن کاملOptimal Linear Codes Over GF(7) and GF(11) with Dimension 3
Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...
متن کاملWeight hierarchies of binary linear codes of dimension 4
The weight hierarchy of a binary linear [n; k] code C is the sequence (d1; d2; : : : ; dk) where dr is the smallest support of an r-dimensional subcode of C. The codes of dimension 4 are collected in classes. The possible weight hierarchies in each class are given. For one class the details of the proofs are included. c © 2001 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of algebra combinatorics discrete structures and applications
سال: 2021
ISSN: ['2148-838X']
DOI: https://doi.org/10.13069/jacodesmath.935947